Like

Welcome On Mobius

Mobius was created by professionnal coders and passionate people.

We made all the best only for you, to enjoy great features and design quality. Mobius was build in order to reach a pixel perfect layout.

Mobius includes exclusive features such as the Themeone Slider, Themeone Shorcode Generator and Mobius Grid Generator.

Our Skills

WordPress90%
Design/Graphics75%
HTML/CSS/jQuery100%
Support/Updates80%

The Essential Data Science Skills you need

By Hassan Askari 11 months agoNo Comments

Data Scientists are known for having a knack for statistics, data analysis etc. in order to understand and obtain insights from a given dataset, usually quite enormous in quantity. Here are some fundamentally important data science skills that are absolutely necessary for a Data Scientist. This list is not a conclusive one, as it only provides a general review of essential skills that a data scientists needs:

  • Passion for Problem Solving

Problem-solving skills Data Scientists are critical in solving their day to day business problems. As a data scientist, you’ll be performing in-depth analysis of data with the knowledge of the relevant industry you’re working in. Business problems must be solved in a systematic manner, in a way that is critical for the business. Data Scientists also invent improved ways of how the business should use its data for better decision making. It is important to know what business problems your company is trying to solve, as well as practical strategies to solve them.

  • Programming

Familiarity with at least one programming language. It’s the most fundamental of a data scientist’s skill set. Problems for Data scientist are much more practical than theoretical in nature. It is also nice to have fundamental knowledge of algorithms and data structures for writing efficient code. Knowledge of an open source statistical computing package software such as a statistical package like R would help you with this. Python is also a popular choice among companies looking for data scientists. Also, anyone wanting to get into data science also needs to learn about databases. Without learning tools like Hadoop & SQL, you won’t be able to do much.

  • Ability to Communicate Solutions To Problems

This skill complements your technical skills in communicating the solution to the decision makers in a concise, effective manner. For this to happen, it is absolutely necessary to have good communication skills. Possessing good soft skills will help you in presenting your critical observations, as well as it will make your presentation impressive enough to convince the management. Good interpersonal skills are required to communicate all around within the organization hierarchy, including the non-technical staff e.g. Marketing & Sales department. It is often branded as storytelling because it simplifies all the complexities to communicate insights in a clear, comprehensive manner for others to act on the instructions.

  • Knowledge of Statistics/Mathematics

Most of the hard work is done by software, but it only makes sense if a data scientist has the ability to choose which statistical test to run when and what insights to gather from the results. To be a data scientist, one has to think like a researcher while dealing with your company’s data. Most of the interpretations will be done of data, and you will be expected to implement a solution that will improve the decision making of the business. For this, you’ll need to have mastered the basics of descriptive and inferential statistics. It is also important to have strong analytical skills by learning about multi variable calculus, Linear algebra etc. Knowledge of theory & models along with the methodologies helps deciding how & where to apply them. They form the foundation of most of the data analysis techniques.

  • Visualization

Most of the results gathered from analysis do not allow visualisation. As a data scientist, You will be needing a good graph at while presenting your point across the table effectively. There are Various visualisation tools and techniques available with R packages like ggplot.

  • Thinking like a data scientist

It is important for you to have a data-driven approach. By thinking as a data scientist, we mean having a mindset that forces you to look for solutions which previously did not exist. As a data scientist, you will be having firsthand experience in looking at the problem in hand and figuring out solutions using data. You will be dealing with real life business problems & performing analysis solely based on data.

Category:
  Big Data
this post was shared 0 times
 000
About

 Hassan Askari

  (11 articles)

Leave a Reply

Your email address will not be published.